
Architecting and Designing of Semantic Web Based
Application using the JENA and PROTÉGÉ

 – A Comprehensive Study
Archana P. Kumar, Kumar Abhishek, and Vipin Kumar.N

Department of Computer Science and Engineering, MIT Manipal-576104

Abstract: The Resource Description Format (RDF) is used to represent
information modeled as a "graph": a set of individual objects, along with
a set of connections among those objects. In that role, RDF is one of the
pillars of the so-called Semantic Web. This paper describes how the RDF
graph can be modeled by using the Java based framework called Jena.
Jena based on Java deals with programmatic statements. The same can be
done by using an editor- Protégé. The paper compares how the semantic
web concepts can be designed and modeled using the two API and also
states as to which API should be used while developing the Semantic
Based Web Applications for better performance metrics .
Keywords: Jena, Protégé, OWL, RDF, Semantic.

I. INTRODUCTION
The Semantic Web is a "web of data" that enables machines to
understand the semantics, or meaning, of information on the
World Wide Web.[1] It extends the network of hyperlinked
human-readable web pages by inserting machine-readable
metadata about pages and how they are related to each other,
enabling automated agents to access the Web more
intelligently and perform tasks on behalf of users. The term
was coined by Tim Berners-Lee,[2] the inventor of the World
Wide Web and director of the World Wide Web Consortium,
which oversees the development of proposed Semantic Web
standards. He defines the Semantic Web as "a web of data that
can be processed directly and indirectly by machines."
The term "Semantic Web" is often used more specifically to
refer to the formats and technologies that enable it.[3] These
technologies include the Resource Description Framework
(RDF), a variety of data interchange formats (e.g. RDF/XML,
N3, Turtle, N-Triples), and notations such as RDF Schema
(RDFS) and the Web Ontology Language (OWL), all of which
are intended to provide a formal description of concepts, terms,
and relationships within a given knowledge domain.

A) JENA FRAMEWORK
Jena is a Java framework for building Semantic
Web applications1. It provides a programmatic environment
for RDF, RDFS and OWL, SPARQL and includes a rule-based
inference engine. Jena is open source and grown out of work
with the HP Labs Semantic Web Programme.

The Jena Framework includes:

 A RDF API
 Reading and writing RDF in RDF/XML, N3 and
N-Triples
 An OWL API
 In-memory and persistent storage
 RDQL- a query language for RDF
 SPARQL query engine

Jena is a programming toolkit, using the Java Programming
Language. While there are a few command-line tools to help
perform some key tasks using Jena, mostly Jena is used by
writing Java Programs2.
Jena is a Java API which can be used to create and manipulate
RDF graphs. Jena has object classes to represent graphs,
resources, properties and literals. The interfaces representing
resources, properties and literals are called Resource, Property
and Literal respectively.

In Jena, a graph is called a model and is represented by the
Model Interface.
To build applications exploiting the ontology, we need an API
allowing us to access and manipulate directly an ontology
written in OWL. Only a few exist and nearly all of them are
based on the Jena framework. Jena is a Java framework for
building semantic web applications. It is open source and
provides various programming toolboxes- an OWL API. Since
it is reliable, mature and offers a good compatibility with most
of the other RDFS/OWL API, Jena was the choice of API to
build the required application.
Thus Jena Classes can be used to4:

 Retrieve and Parse an RDF File containing a graph or
a collection of graphs.
 Store it in memory
 Examine each triple in turn, examine one
component(say, the subject) of each triple
 in turn, or examine only triples that meet specified
criteria and
 Write a serialized version of a graph to a file.

An RDF Graph is stored in Jena as a “model”, and a Jena
model is created by a factory, as in:
Model m=ModelFactory.createDefaultModel();
Once a model has been defined, Jena can populate it by
reading data from files, backend databases, etc. in various
formats and once it has been populated, Jena can perform set
operations on pairs of populated models and /or search models
for specific values or combinations (patterns) of values.
B) RESOURCE DESCRIPTION FRAMEWORK (RDF)
The Resource Description Framework (RDF) is a standard
(technically a W3C Recommendation) for describing
resources5. A Resource is anything we can identify for
example a class Pizza, Ingredient, Menu,etc. Every Resource
has a URI, a Universal Resource Identifier. A URI can be a
URL or some other kind of unique identifier.
RDF is best thought of in the form of node and arc diagrams.
Each arc in an RDF Model is called a statement. Each

Archana P. Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1279-1282

1279

statement asserts a fact about a resource. A statement has three
parts:
 the subject is the resource from which the arc leaves
 the predicate is the property that labels the arc
 the object is the resource or literal pointed to by the arc
A statement is sometimes called a triple, because of its three
parts.
A simple vcard might look like this in RDF:

Fig. 2 : simple vcard in rdf with more details of the person

node

The resource, John Smith, is shown as an elipse and is
identified by a Uniform Resource Identifier (URI)1, in this case
"http://.../JohnSmith". Resources have properties. In these
examples the sort of properties that would appear on John
Smith's business card. Figure 1 shows only one property, John
Smith's full name. Properties are usually represented in this
qname form when written as RDF XML and it is a convenient
shorthand for representing them in diagrams and in text.
Strictly, however, properties are identified by a URI.
Each property has a value. In this case the value is a literal,
which for now we can think of as a strings of characters.
Literals are shown in rectangles.
Jena is a Java API which can be used to create and manipulate
RDF graphs like this one. Jena has object classes to represent
graphs, resources, properties and literals. The interfaces
representing resources, properties and literals are called
Resource, Property and Literal respectively. In Jena, a graph is
called a model and is represented by the Model interface.
The code to create this graph, or model, is simple:
// some definitions
static String personURI = "http://somewhere/JohnSmith";
static String fullName = "John Smith";

// create an empty Model
Model model = ModelFactory.createDefaultModel();

// create the resource
Resource johnSmith = model.createResource(personURI);

// add the property
johnSmith.addProperty(VCARD.FN, fullName);
The John Smith resource is then created and a property added
to it. The property is provided by a "constant" class VCARD
which holds objects representing all the definitions in the
VCARD schema. Jena provides constant classes for other well
known schemas, such as RDF and RDF schema themselves,
Dublin Core and DAML.

The code to create the resource and add the property, can be
more compactly written in a cascading style:
Resource johnSmith =
model.createResource(personURI)
.addProperty(VCARD.FN, fullName);
Another example of representing different parts of John
Smith’s name can be:

Fig. 2 : simple vcard in rdf with more details of the person

node

 The Jena code to construct this example, is again very simple.
First some declarations and the creation of the empty model.
// some definitions
String personURI = "http://somewhere/JohnSmith";
String givenName = "John";
String familyName = "Smith";
String fullName = givenName + " " + familyName;

// create an empty Model
Model model = ModelFactory.createDefaultModel();

// create the resource
// and add the properties cascading style
Resource johnSmith
= model.createResource(personURI)
.addProperty(VCARD.FN, fullName)
.addProperty(VCARD.N,
model.createResource()
.addProperty(VCARD.Given, givenName)
.addProperty(VCARD.Family, familyName));

Jena has methods for reading and writing RDF as XML. These
can be used to save an RDF model to a file and later read it
back in again.
The key RDF package for the application developer
is com.hp.hpl.jena.rdf.model. The API has been defined in
terms of interfaces so that application code can work with
different implementations without change. This package
contains interfaces for representing models, resources,
properties, literals, statements and all the other key concepts of
RDF, and a ModelFactory for creating models. So that
application code remains independent of the implementation, it
is best if it uses interfaces wherever possible, not specific class
implementations.

Archana P. Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1279-1282

1280

II. PROTEGE
Protégé is a free open source Ontology Editor and Knowledge
Based Framework developed and published by Stanford
University6. It is published under the terms of Mozilla Public
License7.
Protégé is a flexible, configurable platform for the
development of arbitrary model-driven applications and
components. Protégé has an open architecture that allows
programmers to integrate plug-ins, which can appear as
separate tabs, specific user interface components (widgets), or
perform any other task on the current model. The Protégé-
OWL editor provides many editing and browsing facilities for
OWL models, and therefore can serve as an attractive starting
point for rapid application development. Developers can
initially wrap their components into a Protégé tab widget and
later extract them to distribute them as part of a stand-alone
application.
The Protégé-OWL editor enables users to:
 Load and save OWL and RDF ontologies.
 Edit and visualize classes, properties, and SWRL

(Semantic Web Rule Language) rules.
 Define logical class characteristics as OWL expressions.
 Execute reasoners such as description logic classifiers.
 Edit OWL individuals for Semantic Web markup.
The Protégé API not only has a non-visual model part, but also
comes with comprehensive support for user interface
programming. There are several convenient classes and utility
methods that help programmers develop interactive user
interfaces quickly and with uniform look-and-feels that match
the rest of the Protégé family of tools.
One of the foundations of UI programming with Protégé is the
event mechanism, which allows programmers to react cleanly
on changes.
 Protégé is a free, open-source platform to construct

domain models and knowledge based applications with
ontologies.

 Ontologies range from taxonomies, classifications,
database schemas to fully axiomatized theories.

 Ontologies are now central to many applications such as
scientific knowledge portals, information management and
integration systems, electronic commerce and web
services.

There are two main ways of modelling ontologies:
 Frame-based
 OWL
Each of them have its own user interface.
 Protégé Frames Editor: enables users to build and populate

ontologies that are frame-based, in accordance with
OKBC (Open Knowledge Base Connectivity Protocol).

o Classes
o Slots for properties and relationships
o Instances for class

 Protégé OWL Editor: enables users to build ontology for
the Semantic Web, in particular to OWL

o Classes
o Properties
o Instances
o Reasoning

III. WEB ONTOLOGY LANGUAGES (OWL)
Ontologies are used to capture knowledge about some domain
of interest. Ontology describes the concepts in the domain and
also the relationships that hold between those concepts.
Different ontology languages provide different facilities. The
most recent development in standard ontology languages is
OWL from the World Wide Web Consortium (W3C) 8. Like
Protégé, OWL makes it possible to describe concepts but it
also provides new facilities. It has a richer set of operators -
e.g. intersection, union and negation. It is based on a different
logical model which makes it possible for concepts to be
defined as well as described9,10.
Complex concepts can therefore be built up in definitions out
of simpler concepts. Furthermore, the logical model allows the
use of a reasoner which can check whether or not all of the
statements and definitions in the ontology are mutually
consistent and can also recognise which concepts fit under
which definitions. The reasoner can therefore help to maintain
the hierarchy correctly. This is particularly useful when
dealing with cases where classes can have more than one
parent. OWL ontologies have similar components to Protégé
frame based ontologies. However, the terminology used to
describe these components is slightly different from that used
in Protégé . OWL ontology consists of Individuals, Properties,
and Classes, which roughly correspond to Protégé Instances,
Slots and Classes.
Individuals are the objects. An important difference between
Protégé and OWL is that OWL does not use the Unique Name
Assumption (UNA). This means that two different names
could actually refer to the same individual. For example,
“Queen Elizabeth”, “The Queen” and “Elizabeth Windsor”
might all refer to the same individual. In OWL, it must be
explicitly stated that individuals are the same as each other, or
different to each other — otherwise they might be the same as
each other, or they might be different to each other. Individuals
are also known as instances. Individuals can be referred to as
being ‘instances of classes’. Properties are binary relations on
individuals - i.e. properties link two individuals together. For
example, the property hasSibling might link the individual
Matthew to the individual Gemma, or the property hasChild
might link the individual Peter to the individual Matthew.
Properties can have inverses. For example, the inverse of
hasOwner is isOwnedBy. Properties can be limited to having a
single value i.e. to being functional. They can also be either
transitive or symmetric. Properties are roughly equivalent to
slots in Protégé.
OWL has two main types of properties: Object properties and
Datatype properties.
 Object properties relate an individual to an individual.
 Datatype properties link an individual to a data value.
 A third type of property, Annotation properties, can be

used to attach ‘meta-data’ to classes, properties and
individuals.

OWL supports the specification of a property hierarchy.
 We can specify that a property has a super-property. In

fact, for any given property we can specify multiple super
properties.

Archana P. Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1279-1282

1281

 In OWL, object properties may only have object
properties as super-properties, and datatype properties
may only have datatype properties as super-properties.

OWL classes are interpreted as sets that contain individuals.
They are described using formal (mathematical) descriptions
that state precisely the requirements for membership of the
class. For example, the class Cat would contain all the
individuals that are cats in the domain of interest. Classes may
be organised into a superclass-subclass hierarchy, which is also
known as taxonomy. Subclasses specialise (‘are subsumed by’)
their superclasses. OWL supports six main ways of describing
classes of individuals. The simplest of these is a Named Class.
The other types of class descriptions are anonymous classes.
 Named Classes – create a class and assign a name to it.

Two ‘built in’ named classes: owl:Thing and owl:Nothing.
 Anonymous classes- built up from class descriptions.
 Intersection, Union and Complement classes.
 Restriction classes- existential, universal, cardinality,

hasValue.
 Enumeration classes.
 Combinations of Named classes and anonymous classes

are used to build up complex class descriptions.

IV. DIFFERENCE BETWEEN JENA AND PROTÉGÉ
Indeed, a shortcoming of the Jena Framework for OWL
exploitation comes from its very nature: Jena is a general
RDF/RDFS framework. Thus Jena lacks specific primitives for
OWL-based applications. It is the opposite with the Protégé-
OWL API which is dedicated to OWL manipulation and
provides most functions needed to exploit OWL ontology. This
results in a faster and simpler programming. Moreover, since
this API is powering the Protégé ontology editor, it benefits
from the same development support as the editor and is not
likely to be forsaken any time soon. So after considering the
pros and cons of the different API, the Protégé-OWL API is
the final choice for the programming needs. It is worth noting
that these API being Java-based, this implies at least the core
of the applications to be coded in Java.

V. CONCLUSION
The Protégé-OWL API is centered on a model of ontologies.
More precisely, the API includes classes that describe every
OWL item (concept, property, etc.) and the model is an
instantiation of the whole ontology. In this model each OWL
item is represented as an instance of its corresponding class.
This ontology model described by the class OWLModel is not
the only one existing. Not only each OWL API has its own
model, but more importantly each reasoner has one too. In our
implementation we use the OWLModel from the Protégé-
OWL API and the reasoner uses a translation of it in its own
optimized format.
Jena uses different encoding <?xml version=’1.0’
encoding=’iso-8859-1’?> and more recent RDF-S specification

than in Protégé <ENTITY rdfs ‘http:www.w3.org/2000/01/rdf-
schema#’>11.

Both are APIs and can be used for similar tasks with the only
main difference that Protégé-OWL is based on a much older
framed-based API which predates OWL and RDF. Therefore
Protégé had to do many design compromise which was found
inconvenient. Jena on the other hand has been designed for
RDF and OWL from the start and is optimized for handling
triples, queries, etc.
The Protégé-OWL used Jena for parsing and provides a Jena
“view” (implementation of the Graph interface) so that some
Jena services can be exploited for Protége.
It can be easy to create an ontology file with Protégé and read
that into a Jena Model and then process it as required.
The Choice of which APRI to used should be determined by
two factors as given below:
 Does the API offer a set of programming abstractions that

can be used comfortably to implement the user
requriements.

 Is the API actively supported and bug fixed in case the
standards changes.

TABLE1 DIFFERENCE BETWEEN PROTÉGÉ AND JENA.

Protégé Jena

User Friendly in terms of user
interface

Does not have a user interface.

Has forms which can be used to
insert records.

Has a programming code to enter
the properties and their values.

Does not involve any
programming code.

Involves only programming
code.

Has reasoner and inbuilt query
tabs to form query to the
database.

Can work with SPARQL and
RDQL which are query
languages to query the RDF
Data.

Uses a much older version of
specification and encoding than
Jena.

Uses very recent encoding and
specification as compared to
Protégé.

Has the specifications based on
OWL.

Lacks the primitives based on
OWL.

REFERENCES

[1] "W3C Semantic Web Frequently Asked Questions". W3C.
http://www.w3.org/2001/sw/SW-FAQ. Retrieved March 13, 2008.

[2] Berners-Lee, Tim; James Hendler and Ora Lassila (May 17, 2001).
"The Semantic Web". Scientific American Magazine.
http://www.sciam.com/article.cfm?id=the-semantic-
web&print=true. Retrieved March 26, 2008.

[3] Herman, Ivan (March 12, 2008). "W3C Semantic Web Activity".
W3C. http://www.w3.org/2001/sw/. Retrieved March 13, 2008.

[4] JENA http://jena.sourceforge.net/tutorial/RDF_API/index.html.
[5] http://jena.sourceforge.net/tutorial/RDF_API/
[6] Chaoqing Lv, Takashi Kobayashi, Kiyoshi Agusa, Kun Wu, Qing

Zhu
[7] Matthew Horridge,Holger Knublauch, Alan Rector, Robert Stevens,

Chris Wroe: A
[8] Practical Guide To Building OWL Ontologies Using The Protégé-

OWL
[9] Tutorial:http://protege.stanford.edu/conference/2005/slides/T2_OW

LTutorialI

Archana P. Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1279-1282

1282

